A two-phase material is considered, which consists of a homogeneous elastoplastic matrix containing a homogeneous statistically uniform random set of ellipsoidal inclusions with the same form, orientation, and mechanical properties. The multiparticle effective field method (used in this paper) in the original form assumes constant plastic strains in the matrix. This assumption is replaced by the following micromechanical model: Each inclusion consists of an elastic core and a thin coating. The mechanical properties of both the matrix and the coating are the same but with different plastic strains. Homogeneous plastic strains are assumed inside the matrix and in each of separate subdomains of the coating. A general theory of plasticity is developed for arbitrary loading based on incremental elastoplastic analysis. The consideration of inhomogeneity of plastic strains in the coating enables to obtain some principally new effects of elastoplastic deformation.

1.
Dvorak
,
G. J.
,
1992
, “
Transformation Field Analysis of In-Elastic Composite Materials
,”
Proc. R. Soc. London, Ser. A
,
437
, pp.
311
330
.
2.
Dvorak
,
G. J.
,
1993
, “
Nadai Lecture—Micromechanics of In-Elastic Composite Materials: Theory and Experiment
,”
ASME J. Eng. Mater. Technol.
,
115
, pp.
330
338
.
3.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
, and
Wafa
,
A. M.
,
1994
, “
The Modeling of Inelastic Composite Materials With the Transformation Field Analysis
,”
Modell. Simul. Mater. Sci. Eng.
,
2
, pp.
571
585
.
4.
Hutchinson
,
J. W.
,
1976
, “
Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials
,”
Proc. R. Soc. London, Ser. A
,
348
, pp.
101
130
.
5.
Nemat-Nasser
,
S.
, and
Obata
,
M.
,
1986
, “
Rate-Dependent, Finite Deformation of Polycristals
,”
Proc. R. Soc. London, Ser. A
,
A407
, pp.
377
404
.
6.
Corvasce, F., Lipinski, P., and Berveiller, M., 1990, “The Effects of Thermal, Plastic and Elastic Stress Concentration on the Overall Behavior of Metal Matrix Composites,” Inelastic Deformation of Composite Materials, ed. G. J. Dvorak, ed., Springer-Verlag, New York, pp. 389–408.
7.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1988
, “
A Theory of Particle-Reinforced Plasticity
,”
ASME J. Appl. Mech.
,
55
, pp.
126
135
.
8.
Wakashima
,
K.
, and
Tsukamoto
,
H.
,
1988
, “
A Unified Micromechanical Approach Toward Thermomechanical Tailoring of Metal Matrix Composites
,”
ISIJ Int.
,
32
, pp.
883
892
.
9.
Arsenault
,
R. J.
, and
Taya
,
M.
,
1987
, “
Thermal Residual Stress in Metal Matrix Composite
,”
Acta Metall.
,
35
, pp.
651
659
.
10.
Reifsnider
,
K. L.
, and
Gao
,
Z.
,
1991
, “
A Micromechanics Model for Composites Under Fatigue Loading
,”
Int. J. Fatigue
,
13
, pp.
149
156
.
11.
Lin
,
S. C.
,
Yang
,
C.
,
Mura
,
T.
, and
Iwakuma
,
T.
,
1992
, “
Average Elastic-Plastic Behavior of Composite Materials
,”
Int. J. Solids Struct.
, (George Hermann 70th Anniversary Issue),
28
, pp.
1859
1872
.
12.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1991
, “
The Influence of Inclusion Shape on the Overall Elastoplastic Behavior of a Two-Phase Isotropic Composite
,”
Int. J. Solids Struct.
,
27
, pp.
1537
1550
.
13.
Zhu
,
Z. G.
, and
Weng
,
G. J.
,
1989
, “
Creep Deformation of Particle-Strengthened Metal-Matrix Composites
,”
J. Eng. Mater. Technol.
,
111
, pp.
99
105
.
14.
Accorsi
,
M. L.
, and
Nemat-Nasser
,
S.
,
1986
, “
Bounds on the Overall Elastic and Instantaneous Elastoplastic Moduli of Periodic Composites
,”
Mech. Mater.
,
5
, pp.
209
220
.
15.
Weissenbek
,
E.
,
Bo¨hm
,
H. J.
, and
Rammerstorfer
,
F. G.
,
1994
, “
Micromechanical Investigations of Arrangement Effects in Particle Reinforced Metal Matrix Composites
,”
Comput. Mater. Sci.
,
3
, pp.
263
278
.
16.
Needleman
,
A.
, and
Tvergard
,
V.
,
1993
, “
Comparison of Crystal Plasticity and Isotropic Hardening Predictions for Metal-Matrix Composites
,”
ASME J. Appl. Mech.
,
60
, pp.
70
76
.
17.
Nakamura
,
T.
, and
Suresh
,
S.
,
1993
, “
Effect of Thermal Residual Stresses and Fiber Packing on Deformation of Metal-Matrix Composites
,”
Acta Metall. Mater.
,
41
, pp.
1665
1681
.
18.
Duva
,
J. M.
,
1988
, “
A Constitutive Description of Nonlinear Materials Containing Voids
,”
Mech. Mater.
,
5
, pp.
137
144
.
19.
Lee
,
B. J.
, and
Mear
,
M. E.
,
1991
, “
Effect of Inclusion Shape on the Stiffness of Non-Linear Two-Phase Composites
,”
J. Mech. Phys. Solids
,
39
, pp.
630
649
.
20.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
,
50
, pp.
481
505
.
21.
Zhu
,
Z. G.
, and
Weng
,
G. J.
,
1990
, “
A Local Theory for the Calculation of Overall Creep Strain of Particle-Reinforced Composites
,”
Int. J. Plast.
,
6
, pp.
449
469
.
22.
Olsson
,
M.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1995
, “
Elastoplastic Analysis of Thermal Cycling: Ceramic Particles in a Metallic Matrix
,”
J. Mech. Phys. Solids
,
43
, pp.
1639
1671
.
23.
Taggart
,
D. G.
, and
Bassani
,
J. L.
,
1991
, “
Elastic-Plastic Behavior of Particle Reinforced Composites—Influence of Residual Stresses
,”
Mech. Mater.
,
12
, pp.
63
80
.
24.
Herrmann, K. P., and Mihovsky, I. M., 1994, “On the Modeling of the Inelastic Thermomechanical Behavior and the Failure of Fibre-Reinforced Composites—A Unified Approach,” Advances in Applied Mechanics, K. Z. Markov, ed, World Scientific, Singapore, pp. 141–191.
25.
Buryachenko
,
V. A.
, and
Lipanov
,
A. M.
,
1989
, “
Effective Field Method in the Theory of Perfect Plasticity of Composite Materials
,” Prikl. Mekh. i Tekh. Fiz., (3), pp. 149/N155. (in Russian. Engl. Transl.:
J. Appl. Mech. Tech. Phys.
,
1989
,
30
, pp.
482
487
.
26.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1992
, “
A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites
,”
ASME J. Appl. Mech.
,
59
, pp.
261
268
.
27.
Ding
,
K.
, and
Weng
,
G. J.
,
1998
, “
Plasticity of Particle-Reinforced Composites With a Ductile Interface
,”
ASME J. Appl. Mech.
,
65
, pp.
596
601
.
28.
Buryachenko
,
V. A.
,
1996
, “
The Overall Elastoplastic Behavior of Multiphase Materials With Isotropic Components
,”
Acta Mech.
,
119
, pp.
93
117
.
29.
Buryachenko
,
V. A.
,
2001
, “
Multiparticle Effective Field Method and Related Methods in Micromechanics of Composite Materials
,”
Appl. Mech. Rev.
,
54
(
1
), pp.
1
47
.
30.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
130
140
.
31.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1985
, “
Variational Principles for Nonlinear Inhomogeneous Media
,”
IMA J. Appl. Math.
,
35
, pp.
39
54
.
32.
Ponte Castan˜eda
,
P.
, and
Suquet
,
P.
,
1998
, “
Nonlinear Composites
,”
Adv. Appl. Mech.
,
34
, pp.
171
302
.
33.
Willis
,
J. R.
,
1981
, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
,
21
, pp.
1
78
.
34.
Buryachenko
,
V. A.
, and
Rammerstorfer
,
F. G.
,
2001
, “
On the Thermostatics of Composites With Coated Random Distributed Inclusions
,”
Int. J. Solids Struct.
,
37
, pp.
3177
3200
.
35.
Herve´
,
E.
, and
Zaoui
,
A.
,
1993
, “
N-Layered Inclusion-Based Micromechanical Modeling
,”
Int. J. Eng. Sci.
,
31
, pp.
1
10
.
36.
Bornet
,
M.
,
Herve´
,
E.
,
Stolz
,
C.
, and
Zaoui
,
A.
,
1994
, “
Self-Consistent Approaches and Strain Heterogeneities in Two-Phase Elastoplastic Materials
,”
Appl. Mech. Rev.
,
47
(
1
), pp.
S66–S76
S66–S76
.
37.
Buryachenko
,
V. A.
, and
Rammerstorfer
,
F. G.
,
1999
, “
On the Thermoelasticity of Random Structure Particulate Composites
,”
ZAMP
,
50
, pp.
934
947
.
38.
Ortiz
,
M.
, and
Popov
,
E. P.
,
1985
, “
Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
1561
1576
.
39.
Ray
,
S. K.
, and
Utku
,
S.
,
1989
, “
A Numerical Model for the Thermo-elasto-plastic Behavior of a Material
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
1103
1114
.
40.
Nemat-Nasser, S., and Hori, M., 1993, Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam.
41.
Papadopoulos
,
P.
, and
Taylor
,
R. L.
,
1994
, “
On the Application of Multi-step Integration Methods to Infinitesimal Elastoplasticity
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3169
3184
.
42.
Lagoudas
,
D. S.
,
Gavazzi
,
A. C.
, and
Nigam
,
H.
,
1991
, “
Elastoplastic Behavior of Metal Matrix Composites Based on Incremental Plasticity and the Mori-Tanaka Averaging Scheme
,”
Comput. Mech.
,
8
, pp.
193
203
.
43.
Isupov, L. P., 1996, “Constitutive Equations of Plastic Anisotropic Composite Medium,” IUTAM Symp. Micromech. of Plasticity and Damage of Multiphase Materials, A. Pineau and Z. Zaoui, eds., Kluwer Academic Publ., Dordrecht, pp. 91–98.
You do not currently have access to this content.