A new solution technique is developed for solving the moving mass problem for nonconservative, linear, distributed parameter systems using complex eigenfunction expansions. Traditional Galerkin analysis of this problem using complex eigenfunctions fails in the limit of large numbers of trial functions because complex eigenfunctions are not linearly independent. This linear dependence problem is circumvented by applying a modal constraint on the velocity of the distributed parameter system (Renshaw, A. A., 1997, J. Appl. Mech., 64, pp. 238–240). This constraint is valid for all complete sets of eigenfunctions but must be applied with care for finite dimensional approximations of concentrated loads such as found in the moving mass problem. Numerical results indicate that the proposed method is competitive with Galerkin’s method with real trial functions in terms of accuracy and rate of convergence. [S0021-8936(00)00604-8]

1.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Response and Discretization Methods for Axially Moving Materials
,”
Appl. Mech. Rev.
,
44
, pp.
S279–S284
S279–S284
.
2.
Hryniv
,
R. O.
,
Lancaster
,
P.
, and
Renshaw
,
A. A.
,
1999
, “
A Stability Criterion for Parameter Dependent Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
66
, pp.
660
664
.
3.
Renshaw
,
A. A.
,
1997
, “
Modal Decoupling of Systems Described by Three Linear Operators
,”
ASME J. Appl. Mech.
,
64
, pp.
238
240
.
4.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
5.
Olsson
,
M.
,
1991
, “
On the Fundamental Moving Load Problem
,”
J. Sound Vib.
,
145
, pp.
299
307
.
6.
Sadiku
,
S.
, and
Leipholz
,
H. H. E.
,
1987
, “
On the Dynamics of Elastic Systems With Moving Concentrated Masses
,”
Ing.-Arch.
,
57
, pp.
223
242
.
7.
Lee
,
U.
,
1996
, “
Revisiting the Moving Mass Problem: Onset of Separation Between the Mass and Beam
,”
ASME J. Vibr. Acoust.
,
118
, pp.
516
521
.
8.
Nelson
,
H. D.
, and
Conover
,
R. A.
,
1971
, “
Dynamic Stability of a Beam Carrying Moving Masses
,”
ASME J. Appl. Mech.
,
93
, pp.
1003
1006
.
9.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
,
1998
, “
Response of a Nonconservative Continuous System to a Moving Concentrated Load
,”
ASME J. Appl. Mech.
,
65
, pp.
436
444
.
10.
Shen
,
I. Y.
,
1993
, “
Response of a Stationary, Damped, Circular Plate Under a Rotating Slider Bearing System
,”
ASME J. Vibr. Acoust.
,
115
, pp.
65
69
.
11.
Stanisic
,
M. M.
,
1985
, “
On a New Theory of the Dynamic Behavior of the Structures Carrying Moving Masses
,”
Ing.-Arch.
,
55
, pp.
176
185
.
12.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Traveling Load Response of an Axially Moving String
,”
J. Sound Vib.
,
149
, pp.
267
284
.
13.
Iwan
,
W. D.
, and
Moeller
,
T. L.
,
1976
, “
The Stability of a Spinning Elastic Disk With a Transverse Load System
,”
ASME J. Appl. Mech.
,
43
, pp.
485
490
.
You do not currently have access to this content.