This paper derives a general solution of the three-dimensional equations of transversely isotropic piezothermoelastic materials (crystal class, 6 mm). Two displacement functions are first introduced to simplify the basic equations and a general solution is then derived using the operator theory. For the static case, the proposed general solution is very simple in form and can be used easily in certain boundary value problems. An illustrative example is given in the paper by considering the symmetric crack problem of an arbitrary temperature applied over the faces of a flat crack in an infinite space. The governing integro-differential equations of the problem are derived. It is found that exact expressions for the piezothermoelastic field for a penny-shaped crack subject to a uniform temperature can be obtained in terms of elementary functions. [S0021-8936(00)01704-9]

1.
Tani
,
J.
,
Takagi
,
T.
, and
Qiu
,
J. H.
,
1998
, “
Intelligent Material Systems: Application of Functional Materials
,”
ASME Appl. Mech.
,
51
, pp.
505
521
.
2.
Pak
,
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
, pp.
647
653
.
3.
Bisegna
,
P.
, and
Maceri
,
F.
,
1996
, “
An Exact Three-Dimensional Solution for Simply Supported Rectangular Piezoelectric Plates
,”
ASME J. Appl. Mech.
,
63
, pp.
628
638
.
4.
Chen
,
W. Q.
,
1999
, “
Problems of Radially Polarized Piezoelastic Bodies
,”
Int. J. Solids Struct.
,
36
, pp.
4317
4332
.
5.
Chen
,
W. Q.
, and
Shioya
,
T.
,
1999
, “
Fundamental Solution for a Penny-Shaped Crack in a Piezoelectric Medium
,”
J. Mech. Phys. Solids
,
47
, pp.
1459
1475
.
6.
Chen
,
W. Q.
,
Shioya
,
T.
, and
Ding
,
H. J.
,
1999
, “
The Elasto-Electric Field for a Rigid Conical Punch on a Transversely Isotropic Piezoelectric Half-Space
,”
ASME J. Appl. Mech.
,
66
, pp.
764
771
.
7.
Nowinski, J. L., 1978, Theory of Thermoelasticity With Applications, Sijthoff and Noordhoff, Alpen aan den Rijn, The Netherlands.
8.
Tiersten
,
H. F.
,
1971
, “
On the Nonlinear Equations of Thermoelectroelasticity
,”
Int. J. Eng. Sci.
,
9
, pp.
587
604
.
9.
Nowacki
,
W.
,
1978
, “
Some General Theorems of Thermopiezoelectricity
,”
J. Therm. Stresses
,
1
, pp.
171
182
.
10.
Nowacki
,
J. P.
,
1982
, “
Steady-State Problems of Thermopiezoelectricity
,”
J. Therm. Stresses
,
5
, pp.
183
194
.
11.
Chandrasekharaiah
,
D. S.
,
1988
, “
A Generalized Linear Thermoelasticity Theory for Piezoelectric Media
,”
Acta Mech.
,
71
, pp.
39
49
.
12.
Iesan
,
D.
,
1989
, “
On Some Theorems in Thermopiezoelectricity
,”
J. Therm. Stresses
,
12
, pp.
209
222
.
13.
Tauchert
,
T. R.
,
1992
, “
Piezothermoelastic Behavior of a Laminated Plate
,”
J. Therm. Stresses
,
15
, pp.
25
37
.
14.
Dube
,
G. P.
,
Kapuria
,
S.
, and
Dumir
,
P. C.
,
1996
, “
Exact Piezothermoelastic Solution of Simply-Supported Orthotropic Circular Cylindrical Panel in Cylindrical Bending
,”
Arch. Appl. Mech.
,
66
, pp.
537
554
.
15.
Lee
,
H. J.
, and
Saravanos
,
D. A.
,
1996
, “
Coupled Layerwise Analysis of Thermopiezoelectric Composite Beams
,”
AIAA J.
,
34
, pp.
1231
1237
.
16.
Stam
,
M.
, and
Carman
,
G.
,
1996
, “
Electrothermoelastic Behavior of Piezoelectric Coupled Cylinders
,”
AIAA J.
,
34
, pp.
1612
1618
.
17.
Tang
,
Y. Y.
,
Noor
,
A. K.
, and
Xu
,
K.
,
1996
, “
Assessment of Computational Models for Thermoelectroelastic Multilayered Plates
,”
Comput. Struct.
,
61
, pp.
915
923
.
18.
Xu
,
K.
, and
Noor
,
A. K.
,
1996
, “
Three-Dimensional Analytical Solutions for Coupled Thermoelectroelastic Response of Multilayered Cylindrical Shells
,”
AIAA J.
,
34
, pp.
802
812
.
19.
Ashida
,
F.
,
Tauchert
,
T. R.
, and
Noda
,
N.
,
1993
, “
Response of a Piezothermoelastic Plate of Crystal Class 6 mm Subject to Axisymmetric Heating
,”
Int. J. Eng. Sci.
,
31
, pp.
373
384
.
20.
Ashida
,
F.
,
Noda
,
N.
, and
Tauchert
,
T. R.
,
1994
, “
A Two-Dimensional Piezothermoelastic Problem in an Orthotropic Plate Exhibiting Crystal Class 2 mm
,”
JSME Int. J.
,
37
, pp.
334
340
.
21.
Ashida
,
F.
,
Tauchert
,
T. R.
, and
Noda
,
N.
,
1994
, “
A General Solution Technique for Piezothermoelasticity of Hexagonal Solids of Class 6 mm in Cartesian Coordinates
,”
Z. Angew. Math. Mech.
,
74
, pp.
87
95
.
22.
Ashida
,
F.
,
Tauchert
,
T. R.
, and
Noda
,
N.
,
1994
, “
Potential Function Method for Piezothermoelastic Problems of Solids of Crystal Class 6 mm in Cylindrical Coordinates
,”
J. Therm. Stresses
,
17
, pp.
361
375
.
23.
Ashida
,
F.
,
Noda
,
N.
, and
Tauchert
,
T. R.
,
1994
, “
Inverse Problem of Two-Dimensional Piezothermoelasticity in an Orthotropic Plate Exhibiting Crystal Class mm 2
,”
JSME Int. J.
,
37
, pp.
341
346
.
24.
Ashida
,
F.
,
Choi
,
J.
, and
Noda
,
N.
,
1997
, “
Control of Elastic Displacement in Piezoelectric-Based Intelligent Plate Subjected to Thermal Load
,”
Int. J. Eng. Sci.
,
35
, pp.
851
868
.
25.
Ashida
,
F.
, and
Tauchert
,
T. R.
,
1997
, “
Temperature Determination for a Contacting Body Based on an Inverse Piezothermoelastic Problem
,”
Int. J. Solids Struct.
,
34
, pp.
2549
2561
.
26.
Ashida
,
F.
, and
Tauchert
,
T. R.
,
1998
, “
Transient Response of a Piezothermoelastic Circular Disk Under Axisymmetric Heating
,”
Acta Mech.
,
128
, pp.
1
14
.
27.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Sengupta
,
S.
,
1996
, “
Exact Piezothermoelastic Axisymmetric Solution of a Finite Transversely Isotropic Cylindrical Shell
,”
Comput. Struct.
,
61
, pp.
1085
1099
.
28.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Segupta
,
S.
,
1998
, “
Three-Dimensional Axisymmetric Piezothermoelastic Solution of a Transversely Isotropic Piezoelectric Clamped Circular Plate
,”
ASME J. Appl. Mech.
,
65
, pp.
178
183
.
29.
Ding
,
H. J.
,
Guo
,
F. L.
,
Hou
,
P. F.
, and
Chi
,
Y. W.
,
1999
, “
A General Solution for Static Piezothermoelastic Problems of Crystal Class 6 mm Solids
,”
Acta Mech. Solida Sinica
,
12
, pp.
189
197
.
30.
Ding
,
H. J.
,
Guo
,
F. L.
, and
Hou
,
P. F.
,
2000
, “
A General Solution for Piezothermoelasticity of Transversely Isotropic Piezoelectric Materials and Its Applications
,”
Int. J. Eng. Sci.
,
38
, pp.
1415
1440
.
31.
Shang
,
F. L.
,
Wang
,
Z. K.
, and
Li
,
Z. H.
,
1996
, “
Thermal Stresses Analysis of a Three-Dimensional Crack in a Thermopiezoelectric Solid
,”
Eng. Fract. Mech.
,
55
, pp.
737
750
.
32.
Fabrikant, V. I., 1989, Applications of Potential Theory in Mechanics: A Selection of New Results, Kluwer Academic Publishers, The Netherlands.
33.
Chen
,
W. Q.
,
1999
, “
On the Application of Potential Theory in Piezoelasticity
,”
ASME J. Appl. Mech.
,
66
, pp.
808
811
.
34.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
35.
Ding
,
H. J.
,
Chen
,
B.
, and
Liang
,
J.
,
1996
, “
General Solutions for Coupled Equations for Piezoelectric Media
,”
Int. J. Solids Struct.
,
33
, pp.
2283
2298
.
36.
Sneddon, I. N., 1966, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam.
37.
Tsai
,
Y. M.
,
1983
, “
Thermal Stress in a Transversely Isotropic Medium Containing a Penny-Shaped Crack
,”
ASME J. Appl. Mech.
,
50
, pp.
24
28
.
38.
Sneddon, I. N., and Lowengrub, M., 1969, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons, New York.
You do not currently have access to this content.