Abstract

Because of the continuous expanding of the district heating, the heating load of combined heat and power (CHP) plants increases year by year. The minimum power load of CHP plant increases with the heating load due to the heat-power coupling mechanism. Therefore, heat-power decoupling is necessary to improve the operation flexibility for CHP units. Integrating the absorption heat pump (AHP) is an effective method to realize the heat-power decoupling. In this study, a 330MW CHP unit model and AHP model have been developed and validated. The performance of the heat-power decoupling and energy saving performance has been investigated by comparing the thermodynamic performance indicators. Results show that, the proposed system can increase the maximum heating load and decrease the power generation when the primary network return temperature is decreased. When the heating steam extraction is kept constant, with the increase of the primary network return water temperature, the heat generation efficiency and the standard coal consumption rate of heating increases, the coal consumption rate of power generation and the heating efficiency decreases. And the primary network return water temperature increases from 40 °C to 70 °C, the coal consumption rate of power generation decreases by 4.3 g/kWh, and the coal consumption rate of heating increases by 0.67 kg/GJ.

This content is only available via PDF.
You do not currently have access to this content.