Two significant causes of noise related to cavities are direct and indirect flow induced turbulence/vortex shedding mechanisms. Examples of induced noise can be found in many applications of both closed-flow and open-flow cavities — some with resonance of acoustic modes. An example is a flow valve with a cavity where flow along the cavity gives pulsations either trapped within the valve or exciting downstream piping acoustic modes. There are passive methods of mitigation besides detuning such as modification of the entrance to the cavity, blockage, and use of Helmholtz resonators. Natural frequencies of cavity acoustic modes can be irregular, but for many such as with circular, square, rectangular or axisymmetric shapes can give symmetry of modes. An example is a cavity at the sides of rotating disks, where transverse symmetrical modes having circular and diametric patterns are similar to structural vibratory modes for bladed disks. In the last decade it has been documented that for centrifugal compressors blade passing acoustic pressure pulsation due to Tyler-Sofrin spinning modes can add to alternating stress from non-uniform flow excitation, such as from stator wakes. Cavity acoustic mode excitation then has been termed “triple coincidence” or “triple crossing”, explaining rare documented impeller fatigue failures and likely a reason, at least partially, for some unexplained failures. A novel method described herein is to treat these and similar cavities as fluid-filled disks, then utilize or add blade-like elements within the cavities. The method described (patent application, PCT US1820880) to reduce response of these cavities is to intentionally mistune the elements as has been documented for bladed disk modes. Other applications of this method are possible for many other mechanisms. These modification(s) can alleviate concern for any mechanism having structural vibration excitation acoustically and/or for environmental noise issues.
Skip Nav Destination
ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018
August 26–29, 2018
Chicago, Illinois, USA
Conference Sponsors:
- Noise Control and Acoustics Division
ISBN:
978-0-7918-5142-5
PROCEEDINGS PAPER
Review of Causes and Mitigation of Cavity Noise in Machinery and Other Mechanisms
Frank Kushner
Frank Kushner
Frank Kushner Consulting, Delmont, PA
Search for other works by this author on:
Frank Kushner
Frank Kushner Consulting, Delmont, PA
Paper No:
NCAD2018-6102, V001T06A001; 10 pages
Published Online:
October 10, 2018
Citation
Kushner, F. "Review of Causes and Mitigation of Cavity Noise in Machinery and Other Mechanisms." Proceedings of the ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018. ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018. Chicago, Illinois, USA. August 26–29, 2018. V001T06A001. ASME. https://doi.org/10.1115/NCAD2018-6102
Download citation file:
40
Views
Related Proceedings Papers
Related Articles
An Attempt to Scale the Vibrations of Water Pipes
J. Pressure Vessel Technol (November,2006)
Dynamic Forcing Function for Flow-Acoustic-Induced
Vibration
J. Pressure Vessel Technol (November,1989)
Related Chapters
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment