Railway induced ground-borne vibration is among the most common and widespread sources of perceptible environmental vibration. It can give rise to discomfort and disturbance, adversely impacting on human activity and the operation of sensitive equipment. The rising demand for building new railway lines or upgrading existing lines in order to meet increasing transit flows has furthered the need for adequate vibration assessment tools during the planning and design stages. In recent years many studies in the fields of rail and ground dynamics have encouraged many prediction techniques giving rise to a wide variety of procedures for estimating vibration on buildings. Each method shows potential for application at different levels of complexity and applicability to varying circumstances. From the perspective of railway environmental impact assessment, this paper reviews some relevant prediction techniques, assessing their degree of suitability for practical engineering application by weighting their methodology (i.e. considerations and requirements) against practicality and precision. The review suggests that not all procedures are practicable (e.g. the attainment of representative parameters needed to run the procedures) whilst others predicate on assumptions, which revealed to be too relaxed resulting in insufficient accuracy; however, a combination of methods may provide the necessary balance.

This content is only available via PDF.
You do not currently have access to this content.