Disassembly is an essential process for the recovery of end-of-life (EOL) electronics in remanufacturing sites. Nevertheless, the process remains labor-intensive due to EOL electronics’ high degree of uncertainty and complexity. The robotic technology can assist in improving disassembly efficiency, however, the characteristics of EOL electronics pose difficulties for robot operation, such as removing small components. For such tasks, detecting small objects is critical for robotic disassembly systems. Screws are widely used as fasteners in ordinary electronic products while having small sizes and varying shapes in a scene. To achieve robotic disassembly of screws, the location information and the required tools need to be predicted. This paper proposes a framework to automatically detect screws and recommend related tools for disassembly. First, the YOLOv4 algorithm is used to detect screw targets in EOL electronic devices, and then a screw image extraction mechanism is executed based on the position coordinates predicted by YOLOv4. Second, after obtaining the screw images, the EfficientNetv2 algorithm is applied for screw shape classification. In addition to proposing a framework for automatic small-object detection, we explore how to modify the object detection algorithm to improve its performance and discuss the sensitivity of tool recommendations to the detection predictions. A case study of three different types of screws is used to evaluate the performance of the proposed framework.

This content is only available via PDF.
You do not currently have access to this content.