Pipelines are one of the safest forms of transportation for oil and gas. However, Pipelines may experience defects, such as corrosion, cracks during service period. Therefore, evaluation of these defects is very important in terms of assessment and for continued safe operation. Corrosion defects at the external surface of pipelines are often the result of fabrication faults, coating or cathodic protection issues, residual stress, cyclic loading, temperature or local environment (soil chemistry). In general, corrosion may occur in most pipes due to coating failure, and a pipe without any protective coating will experience external corrosion after some years. However, corrosion can occur on the internal surface of the pipeline due to contaminants in the products such as small sand particles.

At present, there are different assessment methods for different types of defects in pipelines. The most popular codes for defect assessment in oil and gas pipelines are RSTRENG, Modified B31G, BS 7910 and API 579. Besides these codes and methods, there are numerical programs, such as CorLAS, which have been used successfully for assessing crack flaws in Pipelines. RSTRENG and B 31G methods are very simple when compared with API 579. API 579 is very complex method of assessing defects but very useful for remaining life assessment of Pipelines.

In this paper corrosion defects like general metal loss, localized metal loss, pitting corrosion, other defects like dents, gouges, cracks, their remediation methods assessed based on API 579 method and our experience in Oil Pipelines. Since API 579 doesn’t cover cross country pipelines explicitly, we have made a research applying API 579 to ASME B31.4.

Even though, we have done research on all types of defects (Level 1 and Level 2 assessment), in this paper we have covered only General metal loss assessment.

This content is only available via PDF.
You do not currently have access to this content.