The ability to accurately predict droplet entrainment at a quench front is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. The present study proposes a model for droplet entrainment at a quench front, based on the best-understood physics related to the quenching phenomenon that is characteristic to Light Water Reactor (LWR) safety analysis. The model is developed based on a film boundary layer and stability analysis that attempts to match the characteristic time and length scales of the entrainment phenomenon. Data from fundamental tube reflood tests have been reduced and utilized for model development, while more-prototypical independent reflood test data have been used for model evaluation. This model has been implemented into the COBRA-TF (COolant Boiling in Rod Arrays – Two Fluid) transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code. Independent code calculations have been performed to confirm the viability of the model for a range of prototypical LWR reflood calculations.

This content is only available via PDF.
You do not currently have access to this content.