Robust structural design optimization with non-probabilistic uncertainties is often formulated as a two-level optimization problem. The top level optimization problem is simply to minimize a specified objective function while the optimized solution at the second level solution is within bounds. The second level optimization problem is to find the worst case design under non-probabilistic uncertainty. Although the second level optimization problem is a non-convex problem, the global optimal solution must be assured in order to guarantee the solution robustness at the first level. In this paper, a new approach is proposed to solve the robust structural optimization problems with non-probabilistic uncertainties. The WCDO problems at the second level are solved directly by the monotonocity analysis and the global optimality is assured. Then, the robust structural optimization problem is reduced to a single level problem and can be easily solved by any gradient based method. To illustrate the proposed approach, truss examples with non-probabilistic uncertainties on stiffness and loading are presented.

This content is only available via PDF.
You do not currently have access to this content.