This paper develops Bayesian prediction intervals for the minimum of any specified number of future measurements from a Gumbel distribution based on previous observations. The need for such intervals arises in the analysis of data from outlet side feeder pipes at Ontario nuclear power plants. The issue is how to best use these measurements in order to arrive at a statistically sound conclusion concerning the minimum thickness of all remaining uninspected pipes, in particular with what confidence can it be asserted that the remaining wall thicknesses are above an acceptable minimum to ensure a sufficiently high thickness up to the end of the next operating interval. The result gives a probability measure of the potential benefit of performing additional inspections when considered against the additional radiation exposure and the cost of performing additional inspections. Previously, this problem was approached by adapting a classical prediction interval that was originally derived for normal data. Here we examine both a hybrid Bayesian method that combines Bayesian ideas with maximum likelihood and also a full Bayesian approach using Markov Chain Monte Carlo. We show that the latter gives larger lower prediction limits and therefore more margin to fitness for service.
Skip Nav Destination
16th International Conference on Nuclear Engineering
May 11–15, 2008
Orlando, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4814-0
PROCEEDINGS PAPER
Bayesian Prediction for the Gumbel Distribution Applied to Feeder Pipe Thicknesses
Fred M. Hoppe,
Fred M. Hoppe
McMaster University, Hamilton, ON, Canada
Search for other works by this author on:
Lin Fang
Lin Fang
McMaster University, Hamilton, ON, Canada
Search for other works by this author on:
Fred M. Hoppe
McMaster University, Hamilton, ON, Canada
Lin Fang
McMaster University, Hamilton, ON, Canada
Paper No:
ICONE16-48871, pp. 723-729; 7 pages
Published Online:
June 24, 2009
Citation
Hoppe, FM, & Fang, L. "Bayesian Prediction for the Gumbel Distribution Applied to Feeder Pipe Thicknesses." Proceedings of the 16th International Conference on Nuclear Engineering. Volume 1: Plant Operations, Maintenance, Installations and Life Cycle; Component Reliability and Materials Issues; Advanced Applications of Nuclear Technology; Codes, Standards, Licensing and Regulatory Issues. Orlando, Florida, USA. May 11–15, 2008. pp. 723-729. ASME. https://doi.org/10.1115/ICONE16-48871
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
The Impact of Probabilistic Modeling in Life-Cycle Management of Nuclear Piping Systems
J. Eng. Gas Turbines Power (January,2011)
Life Prediction and Monitoring of Nuclear Power Plant Components for Service-Related Degradation
J. Pressure Vessel Technol (February,2001)
Integrated Power Recovery Using Markov Modeling
J. Eng. Gas Turbines Power (November,2011)
Related Chapters
Use of PSA in Lisencing of EPR 1600 in Finland (PSAM-0160)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Global Harmonization of Flaw Modeling/Characterization
Global Applications of the ASME Boiler & Pressure Vessel Code
Constructing Dynamic Event Trees from Markov Models (PSAM-0369)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)