This research aims at developing a turbulent diffusion combustion model based on the chemical equilibrium method and chemical kinetics for simplifying complex chemical mechanisms. This paper presents a combustion model based on the chemical equilibrium method and the eddy dissipation concept (CE-EDC model); the CE-EDC model is validated by simulating a H2-air turbulent diffusion flame. In this model, the reaction rate of fuels and intermediate species is estimated by using the equations of the EDC model. Further, the reacted fuels and intermediate species are assumed to be in chemical equilibrium; the amount of the other species is determined from the amount of the reacted fuels, intermediate species, and air as reactants by using the Gibbs free energy minimization method. An advantage of the CE-EDC model is that the amount of the combustion products can be determined without using detailed chemical mechanisms. The results obtained by using this model were in good agreement with the experimental and computational data obtained by using the EDC model. Using this model, the amount of combustion products can be calculated without using detailed chemical mechanisms. Further, the accuracy of this model is same as that of the EDC model.
- Heat Transfer Division
Simulation of H2-Air Turbulent Diffusion Flame by the Combustion Model Using Chemical Equilibrium Combined With the Eddy Dissipation Concept
Fukumoto, K, & Ogami, Y. "Simulation of H2-Air Turbulent Diffusion Flame by the Combustion Model Using Chemical Equilibrium Combined With the Eddy Dissipation Concept." Proceedings of the ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer. San Francisco, California, USA. July 19–23, 2009. pp. 131-138. ASME. https://doi.org/10.1115/HT2009-88429
Download citation file: