Auxiliary bearings are used to prevent rotor/stator contact in active magnetic bearing systems. They are sacrificial components providing a physical limit on the rotor displacement. During rotor/auxiliary bearing contact significant forces normal to the contact zone may occur. Furthermore, rotor slip and rub can lead to localized frictional heating. Linear control strategies may also become ineffective or induce instability due to changes in rotordynamic characteristics during contact periods. This work considers the concept of using actively controlled auxiliary bearings in magnetic bearing systems. Auxiliary bearing controller design is focused on attenuating bearing vibration resulting from contact and reducing the contact forces. Controller optimization is based on the H norm with appropriate weighting functions applied to the error and control signals. The controller is assessed using a simulated rotor/magnetic bearing system. Comparison of the performance of an actively controlled auxiliary bearing is made with that of a resiliently mounted auxiliary bearing. Rotor drop tests, repeated contact tests, and sudden rotor unbalance resulting in trapped contact modes, are considered.

This content is only available via PDF.
You do not currently have access to this content.