This paper presents a new approach for the guidance and control of a UGV (Unmanned Ground Vehicle). An obstacle avoidance algorithm was developed using an integrated system involving proportional navigation (PN) and a nonlinear model predictive controller (NMPC). An obstacle avoidance variant of the classical proportional navigation law generates command lateral accelerations to avoid obstacles, while the NMPC is used to track the reference trajectory given by the PN. The NMPC utilizes a lateral vehicle dynamic model. Obstacle avoidance has become a popular area of research for both unmanned aerial vehicles and unmanned ground vehicles. In this application an obstacle avoidance algorithm can take over the control of a vehicle until the obstacle is no longer a threat. The performance of the obstacle avoidance algorithm is evaluated through simulation. Simulation results show a promising approach to conditionally implemented obstacle avoidance.

This content is only available via PDF.
You do not currently have access to this content.